
Corrigé de TD
Algorithmique & Programmation

TD3 – Recherche dichotomique
Killian Reine

Rappels de cours.
Introduction au TD
La recherche dichotomique est un algorithme très efficace pour retrouver un élément dans un tableau trié.
L’idée principale est de réduire l’espace de recherche de moitié à chaque étape, en comparant l’élément
recherché avec l’élément du milieu.
Ce TD a pour objectif de :

— Comprendre le fonctionnement de la recherche dichotomique.

— Savoir la mettre en œuvre en pseudo-code.

— Étudier manuellement les étapes et opérations.

— Identifier le meilleur cas, le pire cas, et le nombre de comparaisons.

�� ��Exercice 1
Comprendre le principe
Soit le tableau trié :

T = [2, 4, 7, 10, 15, 20, 25]

On cherche x = 4.

1 Quelle est la taille du tableau?
Le tableau contient 7 éléments. La taille du tableau est donc n = 7.

2 Quel est l’élément du milieu?
Pour trouver l’élément du milieu, on calcule l’indice du milieu :

milieu =

⌊
debut + fin

2

⌋
=

⌊
0 + 6

2

⌋
= 3

L’élément du milieu est donc T [3] = 10 (en indexant à partir de 0).
Remarque : Si on indexe à partir de 1, l’indice du milieu serait

⌊
1+7
2

⌋
= 4 et l’élément du milieu serait

T [4] = 10.

3 Comparer x avec l’élément du milieu. Quelle partie du tableau devons-nous conserver pour conti-
nuer la recherche?
On compare x = 4 avec l’élément du milieu T [3] = 10 :

4 < 10

L’élément recherché est strictement inférieur à l’élément du milieu. Puisque le tableau est trié, l’élément
recherché ne peut se trouver que dans la partie gauche du tableau.
On conserve donc la partie : T [0..2] = [2, 4, 7].

4 Répéter jusqu’à trouver l’élément.
Étape 2 :

— Intervalle : [0, 2]
— Milieu :

⌊
0+2
2

⌋
= 1

— Élément du milieu : T [1] = 4

— Comparaison : 4 = 4 ✓

L’élément est trouvé à l’indice 1.
Conclusion : L’algorithme a trouvé l’élément x = 4 en 2 étapes (comparaisons).

1



Algorithmique 4 Tutorat 2025 - 2026 Killian Reine

�� ��Exercice 2

Écrire l’algorithme

1 Précisez les entrées et sorties.

— Entrées :

— un tableau T de taille n ≥ 1, trié dans l’ordre croissant ;
— un élément x à rechercher, appartenant au même ensemble que les éléments de T ;
— deux indices debut et fin délimitant l’intervalle de recherche dans le tableau.

— Sortie :

— soit un indice i tel que T [i] = x si l’élément est présent dans l’intervalle [debut, fin] ;
— soit une valeur spéciale (par exemple −1 ou Faux) indiquant que x n’appartient pas au tableau.

2 Algorithme de la recherche dichotomique (version récursive).

Fonction RecherchedichotomiqueProcédure RechercheDichotomique(T, x, debut, fin)
si debut > fin alors

retourner -1 // Élément non trouvé
fin si

milieu ← floor((debut + fin) / 2)

si T[milieu] = x alors
retourner milieu // Élément trouvé

sinon si T[milieu] > x alors
// Rechercher dans la partie gauche
retourner RechercheDichotomique(T, x, debut, milieu - 1)

sinon
// Rechercher dans la partie droite
retourner RechercheDichotomique(T, x, milieu + 1, fin)

fin si
Fin Procédure

Convention algorithmique :

— Les indices du tableau commencent à 0.
— L’appel initial se fait avec debut = 0 et fin = n− 1 où n est la taille du tableau.
— L’algorithme est récursif : il s’appelle lui-même avec un intervalle réduit.

�� ��Exercice 3
Simulation et étude des cas
Pour le tableau :

T = [3, 8, 12, 18, 25, 30, 42, 50]

1 Chercher x = 25.

Étape debut fin milieu T[milieu] Comparaison

1 0 7 3 18 25 > 18 → droite

2 4 7 5 30 25 < 30 → gauche

3 4 4 4 25 25 = 25 ✓

Résultat : L’élément 25 est trouvé à l’indice 4 en 3 comparaisons.

2 Chercher x = 7.

Université Le Havre Normandie 2 L2 MATSH-INFO



Algorithmique 4 Tutorat 2025 - 2026 Killian Reine

Étape debut fin milieu T[milieu] Comparaison

1 0 7 3 18 7 < 18 → gauche

2 0 2 1 8 7 < 8 → gauche

3 0 0 0 3 7 > 3 → droite

4 1 0 - - debut > fin

Résultat : L’élément 7 n’est pas trouvé (retourne −1). Il a fallu 3 comparaisons pour déterminer son ab-
sence.

Université Le Havre Normandie 3 L2 MATSH-INFO



Algorithmique 4 Tutorat 2025 - 2026 Killian Reine

�� ��Exercice 4
Analyse de complexité

1 Pour un tableau de taille N , combien de comparaisons au meilleur cas?
Le meilleur cas se produit lorsque l’élément recherché se trouve exactement au milieu du tableau dès la
première itération.
Nombre de comparaisons dans le meilleur cas : 1

2 Pour un tableau de taille N , combien de comparaisons au pire cas?
Le pire cas se produit lorsque l’élément recherché se trouve à l’une des extrémités du tableau, ou qu’il n’est
pas présent.
À chaque étape, la taille de l’intervalle de recherche est divisée par 2.
Le nombre maximal d’étapes nécessaires pour réduire un tableau de taille N à un tableau de taille 1 est
donné par :

k = ⌈log2(N)⌉+ 1

Nombre de comparaisons dans le pire cas : ⌈log2(N)⌉+ 1

Exemples :

— Pour N = 8 : ⌈log2(8)⌉+ 1 = 3 + 1 = 4 comparaisons
— Pour N = 16 : ⌈log2(16)⌉+ 1 = 4 + 1 = 5 comparaisons
— Pour N = 1000 : ⌈log2(1000)⌉+ 1 ≈ 10 + 1 = 11 comparaisons

3 Pourquoi la recherche dichotomique est plus efficace qu’une recherche séquentielle pour de grands
tableaux?
Comparaison des deux algorithmes :

Algorithme Meilleur cas Pire cas

Recherche séquentielle 1 N

Recherche dichotomique 1 ⌈log2(N)⌉+ 1

Avantages de la recherche dichotomique :

— Croissance logarithmique : Le nombre de comparaisons croît très lentement avec la taille du tableau.
Par exemple, pour un tableau de 1 000 000 d’éléments :

— Recherche séquentielle : jusqu’à 1 000 000 comparaisons
— Recherche dichotomique : environ 20 comparaisons

— Efficacité pour les grandes données : Plus le tableau est grand, plus l’avantage de la recherche
dichotomique est important.

— Principe de division : À chaque étape, on élimine la moitié des éléments restants, ce qui permet de
converger très rapidement vers la solution.

Limitation : La recherche dichotomique nécessite que le tableau soit trié au préalable. Si le tableau n’est
pas trié, il faut d’abord le trier, ce qui a un coût en temps.
Conclusion : Pour des tableaux triés de grande taille, la recherche dichotomique est nettement plus effi-
cace qu’une recherche séquentielle.

Université Le Havre Normandie 4 L2 MATSH-INFO


