Algorithmique & Programmation Corrigé de TD

TD3 — Recherche dichotomique

Killian Reine

—— Rappels de cours.

Introduction au TD

La recherche dichotomique est un algorithme trés efficace pour retrouver un élément dans un tableau trié.
Lidée principale est de réduire I'espace de recherche de moitié a chaque étape, en comparant I'élément
recherché avec I'élément du milieu.

Ce TD a pour objectif de :

— Comprendre le fonctionnement de la recherche dichotomique.

— Savoir la mettre en ceuvre en pseudo-code.

— Etudier manuellement les étapes et opérations.

— Identifier le meilleur cas, le pire cas, et le nombre de comparaisons.

Comprendre le principe
Soit le tableau trié :
T = [2,4,7,10,15,20, 25]

On cherche z = 4.
Kl Quelle est Ia taille du tableau ?
Le tableau contient 7 éléments. La taille du tableau est donc n = 7.

H Quel est I'élément du milieu ?
Pour trouver I'élément du milieu, on calcule l'indice du milieu :

debut + fin _|0+6 _3
2 o2 |

milieu = {

Lélément du milieu est donc T3] = 10 (en indexant a partir de 0).
Remarque : Si on indexe a partir de 1, l'indice du milieu serait [117| = 4 et I'élément du milieu serait
T[4] = 10.

E Comparer z avec I’élément du milieu. Quelle partie du tableau devons-nous conserver pour conti-
nuer la recherche ?
On compare = = 4 avec I'élément du milieu T'[3] = 10 :

4 <10

Lélément recherché est strictement inférieur a I'élément du milieu. Puisque le tableau est trié, I'élément
recherché ne peut se trouver que dans la partie gauche du tableau.

On conserve donc la partie : T'[0..2] = [2,4, 7].
ﬂ Répéter jusqu’a trouver I’élément.
Etape 2 :
— Intervalle : [0, 2]
HR 042
— Milieu : |%2] =1
— Elément du milieu : T[1] = 4
— Comparaison : 4 =4
Lélément est trouvé a l'indice 1.
Conclusion : Lalgorithme a trouvé I'élément = = 4 en 2 étapes (comparaisons).

Algorithmique 4 Tutorat 2025 - 2026 Killian Reine

Ecrire I'algorithme
Kl Précisez les entrées et sorties.

— Entrées :

— un tableau T de taille n > 1, trié dans 'ordre croissant;
— un élément z a rechercher, appartenant au méme ensemble que les éléments de T';
— deux indices debut et fin délimitant l'intervalle de recherche dans le tableau.

— Sortie :

— soit un indice i tel que T[i] = z si I'élément est présent dans l'intervalle [debut, fin];
— soit une valeur spéciale (par exemple —1 ou Faux) indiquant que x n’appartient pas au tableau.

E Algorithme de la recherche dichotomique (version récursive).

Fonction RecherchedichotomiqueProcédure RechercheDichotomique(T, x, debut, fin)
si debut > fin alors
retourner -1 // Elément non trouvé
fin si

milieu + floor((debut + fin) / 2)

si T[milieu] = x alors
retourner milieu // Elément trouvé
sinon si T[milieu] > x alors
// Rechercher dans la partie gauche
retourner RechercheDichotomique(T, x, debut, milieu - 1)
sinon
// Rechercher dans la partie droite
retourner RechercheDichotomique(T, x, milieu + 1, fin)
fin si
Fin Procédure

Convention algorithmique :

— Les indices du tableau commencent & 0.
— Lappel initial se fait avec debut = 0 et fin = n — 1 ou n est la taille du tableau.
— Lalgorithme est récursif : il s’appelle lui-méme avec un intervalle réduit.

Simulation et étude des cas
Pour le tableau :
T =[3,8,12,18,25,30,42, 50]

n Chercher = = 25.

Etape | debut | fin | milieu | T[milieu] Comparaison
1 0 7 3 18 25 > 18 — droite
2 4 7 5 30 25 < 30 — gauche
3 4 4 4 25 25 =25

Résultat : L'élément 25 est trouvé a l'indice 4 en 3 comparaisons.
B chercher = = 7.

Université Le Havre Normandie 2 L2 MATSH-INFO

Algorithmique 4

Tutorat 2025 - 2026

Killian Reine

Etape | debut | fin | milieu | T[milieu] | Comparaison
1 0 7 3 18 7 < 18 — gauche
2 0 2 1 8 7 < 8 = gauche
3 0 0 0 3 7> 3 — droite
4 1 0 - - debut > fin

sence.

Université Le Havre Normandie

Résultat : Lélément 7 n’est pas trouvé (retourne —1). Il a fallu 3 comparaisons pour déterminer son ab-

L2 MATSH-INFO

Algorithmique 4 Tutorat 2025 - 2026 Killian Reine

Analyse de complexité

Pour un tableau de taille N, combien de comparaisons au meilleur cas ?

Le meilleur cas se produit lorsque I'élément recherché se trouve exactement au milieu du tableau dés la
premiére itération.

Nombre de comparaisons dans le meilleur cas :

Pour un tableau de taille N, combien de comparaisons au pire cas ?

Le pire cas se produit lorsque I'élément recherché se trouve a I'une des extrémités du tableau, ou qu’il n’est
pas présent.

A chaque étape, la taille de l'intervalle de recherche est divisée par 2.

Le nombre maximal d’étapes nécessaires pour réduire un tableau de taille N a un tableau de taille 1 est
donné par :
k= [logy(N)] +1

Nombre de comparaisons dans le pire cas : | [log,(N)] + 1
Exemples :

— Pour N =8: [log,(8)] + 1 =3 + 1 = 4 comparaisons

— Pour N =16 : [log,(16)] + 1 = 4 + 1 = 5 comparaisons

— Pour N = 1000 : [log,(1000)] + 1 ~ 10 + 1 = 11 comparaisons

Pourquoi la recherche dichotomique est plus efficace qu’une recherche séquentielle pour de grands
tableaux ?

Comparaison des deux algorithmes :

Algorithme Meilleur cas Pire cas
Recherche séquentielle 1 N
Recherche dichotomique 1 [logy(N)] +1

Avantages de la recherche dichotomique :

— Croissance logarithmique : Le nombre de comparaisons croit trés lentement avec la taille du tableau.
Par exemple, pour un tableau de 1000000 d’éléments :

— Recherche séquentielle : jusqu’a 1 000 000 comparaisons
— Recherche dichotomique : environ 20 comparaisons

— Efficacité pour les grandes données : Plus le tableau est grand, plus 'avantage de la recherche
dichotomique est important.

— Principe de division : A chaque étape, on élimine la moitié des éléments restants, ce qui permet de
converger tres rapidement vers la solution.

Limitation : La recherche dichotomique nécessite que le tableau soit trié au préalable. Si le tableau n’est
pas trié, il faut d’abord le trier, ce qui a un colt en temps.

Conclusion : Pour des tableaux triés de grande taille, la recherche dichotomique est nettement plus effi-
cace qu’une recherche séquentielle.

Université Le Havre Normandie 4 L2 MATSH-INFO

